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ABSTRACT: Tornadoes have Lorenzian predictability horizonsO(10) min, and convection-allowing ensemble prediction

systems (EPSs) often provide probabilistic guidance of such events to forecasters. Given the O(0.1)-km length scale of

tornadoes andO(1)-km scale of mesocyclones, operational models running at horizontal grid spacings (Dx) of 3 kmmay not

capture narrower mesocyclones (typical of the southeasternUnited States) and certainly do not resolve most tornadoes per

se. In any case, it requires O(50) times more computer power to reduce Dx by a factor of 3. Herein, to determine value in

such an investment, we compare two EPSs, differing only in Dx (3 vs 1 km), for four low-CAPE, high-shear cases.

Verification was grouped as 1) deterministic, traditional methods using pointwise evaluation, 2) a scale-aware probabilistic

metric, and 3) a novel method via object identification and information theory. Results suggest 1-km forecasts better detect

storms and any associated rapid low- and midlevel rotation, but at the cost of weak–moderate reflectivity forecast skill. The

nature of improvement was sensitive to the case, variable, forecast lead time, and magnitude, precluding a straightforward

aggregation of results. However, the distribution of object-specific information gain over all cases consistently shows greater

average benefit from the 1-km EPS. We also reiterate the importance of verification methodology appropriate for the

hazard of interest.
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1. Introduction

Tornadoes are dangerous in both their severity and short

predictability horizons. Significant tornadoes (rated EF2 or

higher) typically occur within regions of climatologically large

convective available potential energy (CAPE) and vertical

wind shear (herein shear). In the United States, significant

tornadoes occur most often in ‘‘alleys’’ across the southeastern

and central Great Plains of the continental United States

(CONUS; Brooks et al. 2003;Markowski andRichardson 2010;

Dixon et al. 2011; Anderson-Frey et al. 2019); however, tor-

nadoes of all strengths occur in atmospheric states with more

modest CAPE. Sherburn and Parker (2014, their Fig. 1c) found

this subset of tornadoes are relatively more common in the

U.S. Southeast. As in Sherburn and Parker (2014), we term

these high-shear, low-CAPE environments as HSLC regimes.

Multiple fatalities associated with tornadoes within this

low-predictability regime have motivated studies of tor-

nadic thunderstorms in this environment. This effort aims

to augment understanding in both social and meteorolog-

ical fields, with the goal of improving the accuracy and

communication of tornado forecasts and warnings in the

U.S. Southeast. The fruits of this research will benefit not

only that region: the present study focuses on improving

numerical weather prediction (NWP) model skill in HSLC

regimes across the United States. Specifically, the goal is to

improve NWP guidance, yielding longer lead times, re-

duction of false-alarm rates, and increased hit rates for

warnings issued by the National Weather Service. This aligns

with research priorities of Warn-on-Forecast (WoF; Stensrud

et al. 2009) and the Verification of the Origins of Rotation in

Tornadoes Experiment-Southeast (VORTEX-SE).

A disproportionately large number of deadly tornadoes in

the United States are associated with supercell thunderstorms,

with an order of magnitude fewer occurring within quasi-linear

convective systems (QLCSs) or with disorganized convective

cells (Schoen and Ashley 2011). Despite the lower frequency

of nonsupercellular tornadoes (Smith et al. 2012), their rapid

formation poses a different forecast challenge to supercellular

tornadoes (Kis and Straka 2010) and warning-verification

skill is poorer (Brotzge and Erickson 2010); hence, we bal-

ance our focus herein betweenQLCS and supercellular tornado

detection.

Forecasts of severe weather within low-shear flow (including

the HSLC regime) have the lowest skill (Herman et al. 2018;

Anderson-Frey et al. 2019). Supercells in the HSLC regime are

associated with narrower updrafts than those storms occurring

with higher CAPE (*1000 J kg21; e.g., Markowski and Straka

2000) and are therefore more susceptible to the deleterious

effect of dry-air entrainment (James and Markowski 2010;

Kirkpatrick et al. 2011). To compound this lower predictabil-

ity, supercell development is sensitive to nuances captured by

neither bulk measures of the atmospheric regime (Lawson

2019) nor the undersampled observed atmosphere. Further,

the location, timing, and magnitude of severe hazards are sensi-

tive to NWP horizontal grid spacing (Dx; Potvin and Flora 2015).
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As with any partly chaotic system (Lorenz 1963; Zeeman

1979; Williams 1997), tipping points occur in phase space

and result in low predictability of the severe–subsevere

discrimination (Coffer and Parker 2018; Lawson 2019).

This low predictability of thunderstorm evolution is not only

an obstacle to predicting the occurrence, timing, and loca-

tion of supercells, but also an upper bound on already-short

practical predictability of associated damaging phenomena

such as tornadoes.

Storm size is a function of CAPE and 0–6-km shear, among

other bulk atmospheric diagnostics (Lawson 2019). A smaller

storm will require the NWPmodel to be run at a smaller Dx for
it to be detected sufficiently, and we might assume a useful

forecast of tornadogenesis is more likely when its parent

supercell is well resolved. While we cannot explictly fore-

cast tornadoes at Dx $ 1 km—as the effective resolution is

;6Dx (Skamarock 2004)—wediscuss tornadogenesis in terms of

products derived from explicit prediction of the parent thun-

derstorm. Models operational at the time of writing typically

run at 3-km Dx: some as convection-allowing ensemble pre-

diction systems (EPSs); others as deterministic tools [e.g., the

High-Resolution Rapid Refresh model (HRRR); Benjamin

et al. (2016)]. The choice of Dx 5 3 km is a trade-off between

TABLE 1. Latitude–longitude domain dimensions for each case

(rows) and EPS Dx (columns).

Case Code 3 km 1 km

31 Mar 2016 A-20160331 250 3 250 322 3 322

1 May 2017 B-20170501 221 3 221 322 3 322

2 May 2017 C-20170502 251 3 251 322 3 322

4 May 2017 D-20170504 251 3 251 322 3 322

TABLE 2. The WRF mixed-physics configuration, chosen to mimic the parent NEWSe/WoFS configuration as closely as possible. The

cumulus scheme was only used during WoFS data assimilation to generate the ICs and LBCs for the present study. The GEFS member

refers to the IC and LBC dataset used by each member in the parent HRRRe. (Members m19–m36 were created by applying the

configuration in reverse order to the first 18 sets of ICs and LBCs.) The microphysics was Thompson for 2016 cases and NSSL 2-moment

for 2017 cases.

Member PBL SW LW Surface layer Cu scheme GEFS member

m01 YSU Dudhia RRTM MM5 Kain–Fritsch p01

m02 YSU RRTMG RRTMG MM5 Kain–Fritsch p02

m03 MYJ Dudhia RRTM Eta Kain–Fritsch p03

m04 MYJ RRTMG RRTMG Eta Kain–Fritsch p04

m05 MYNN Dudhia RRTM MYNN Kain–Fritsch p05

m06 MYNN RRTMG RRTMG MYNN Kain–Fritsch p06

m07 YSU Dudhia RRTM MM5 Grell p07

m08 YSU RRTMG RRTMG MM5 Grell p08

m09 MYJ Dudhia RRTM Eta Grell p09

m10 MYJ RRTMG RRTMG Eta Grell p10

m11 MYNN Dudhia RRTM MYNN Grell p11

m12 MYNN RRTMG RRTMG MYNN Grell p12

m13 YSU Dudhia RRTM MM5 Tiedtke p13

m14 YSU RRTMG RRTMG MM5 Tiedtke p14

m15 MYJ Dudhia RRTM Eta Tiedtke p15

m16 MYJ RRTMG RRTMG Eta Tiedtke p16

m17 MYNN Dudhia RRTM MYNN Tiedtke p17

m18 MYNN RRTMG RRTMG MYNN Tiedtke p18

m19 YSU Dudhia RRTM MM5 Kain–Fritsch p18

m20 YSU RRTMG RRTMG MM5 Kain–Fritsch p17

m21 MYJ Dudhia RRTM Eta Kain–Fritsch p16

m22 MYJ RRTMG RRTMG Eta Kain–Fritsch p15

m23 MYNN Dudhia RRTM MYNN Kain–Fritsch p14

m24 MYNN RRTMG RRTMG MYNN Kain–Fritsch p13

m25 YSU Dudhia RRTM MM5 Grell p12

m26 YSU RRTMG RRTMG MM5 Grell p11

m27 MYJ Dudhia RRTM Eta Grell p10

m28 MYJ RRTMG RRTMG Eta Grell p09

m29 MYNN Dudhia RRTM MYNN Grell p08

m30 MYNN RRTMG RRTMG MYNN Grell p07

m31 YSU Dudhia RRTM MM5 Tiedtke p06

m32 YSU RRTMG RRTMG MM5 Tiedtke p05

m33 MYJ Dudhia RRTM Eta Tiedtke p04

m34 MYJ RRTMG RRTMG Eta Tiedtke p03

m35 MYNN Dudhia RRTM MYNN Tiedtke p02

m36 MYNN RRTMG RRTMG MYNN Tiedtke p01
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Dx, ensemble membership, and lead time, with Dx 5 3 km a

reasonable upper bound for representing deep-convection-

related hazards (Potvin and Flora 2015).

A decrease in Dx may also benefit the forecast of vortices

within QLCSs: so-called mesovortices (Weisman and Trapp

2003; Trapp and Weisman 2003; Smart and Browning 2009).

Thesemesovortices are typically brief andmay yield tornadoes

less significant in their damage characteristics (i.e., EF0 or

EF1). However, some rotation tracks may persist for much

longer and/or cause more significant damage. While updraft

width is positively correlated with tornado strength (Trapp

et al. 2017), this does not preclude strong tornadoes occurring

in tandem with narrow updrafts.

This discussion of Dx is set against the backdrop of practical

limits in high-performance-computing resources. The increase

of ensemble membership by one linearly increases the com-

puting resources required to run the new system in the same

wall-clock time as the old system (neglecting bottlenecks or

latency of data transmission). Conversely, reducing Dx from 3

to 1 km requires O(50) times the computing resources due to

1) a threefold increase in calculations performed in the latitude

and longitude dimensions and 2) associated reduction in time-

step length to avoid a fatal Courant–Friedrichs–Lewy condi-

tion violation. (We neglect an increase in vertical resolution

that may accompany a decrease in Dx). This competition for

resources at the convection-allowing scale may be better spent

on appropriate ensemble reliability instead of Dx reduction

(Schwartz et al. 2017; Loken et al. 2017).

Herein, we test the hypothesis that decreasing Dx from 3 to

1 km improves the detection of supercells and potentially tor-

nadogenesis in HSLC regimes as found by Schwartz and Sobash

(2019) and Sobash et al. (2019) in a multiyear deterministic-

forecast study. The methodology herein differs from those

studies by evaluating forecast skill in the first 3 h (rather than

the first 36 h) with an object-based probabilistic technique

grounded in information theory that is more suitable for re-

warding the detection of infrequent strong rotation. Using two

EPSs, we 1) detect the faint signal of tornadogenesis in forecast

and observational data, 2) amplify this signal above the noise

(i.e., uncertainty) by filtering EPS output with one of three

methods, before 3) evaluating and analyzing the relative per-

formances of both EPSs in detecting mesocyclone occurrence

TABLE 3. Sources of observational and forecast datasets, and their interpolated grids to enable forecast verification. Letter codes are

N (native grid), N-I (close to native; grids misaligned, but interpolated), I (interpolated to a coarser grid), and C-N (native, but cut to the

1-kmdomain). NoteMRMS azimuthal shear is valid within the 0–2- and 2–5-km layers (on identical grids). All grids were trimmed so their

geographical extents were as close to coherence (with the 1-km domain) as possible.

Dataset Variable(s) Native Dx 1 km 3 km

ISU NEXRAD Composite reflectivity ;1 km N-I I

MRMS Azimuthal shear ;1 km (2016); ;0.5 km (2017) N-I; I I

3-km EPS Composite reflectivity, UH25, UH02 3 km C-N

1-km EPS Composite reflectivity, UH25, UH02 1 km N

TABLE 4. Tornado reports within the 1-km spatial and temporal domain for each case. The event number is given by NWS (see text for

source). Time is in UTC. Warning lead time is in minutes. Latitude and longitude are in degrees. A nearby location is provided for the

reader’s reference. The state abbreviations are Mississippi (MS), Alabama (AL), Pennsylvania (PA), and Georgia (GA). The NWS

weather forecast office (WFO) abbreviations are Jackson (JAN), Birmingham (BMX), Pittsburgh (PBZ), State College (CTP), and

Peachtree City (FFC).

Case Event Time Lat Lon Warn time Location reference County State WFO Rating

A-20160331 624183 2326 33.44 288.32 9 Columbus Lowndes MS JAN EF1

626734 2332 33.46 288.28 12 Stafford Pickens AL BMX EF1

626735 2343 33.47 288.16 24 Ethelsville Pickens AL BMX EF1

626738 0003 33.80 287.85 7 Bluff Fayette AL BMX EF1

626742 0027 33.87 287.68 28 Bazemore Fayette AL BMX EF1

626744 0104 33.66 287.51 6 Alta Fayette AL BMX EF0

B-20170501 702457 1831 40.91 280.07 2 Prospect Butler PA PBZ EF0

702458 1856 41.09 279.73 6 Eldorado Butler PA PBZ EF0

702459 1909 41.19 279.55 19 Beaver Clarion PA PBZ EF0

702460 1926 41.33 279.25 7 Turkey Ridge Clarion PA PBZ EF0

702463 1927 41.34 279.22 8 Cooksburg Clarion PA PBZ EF0

702465 1927 41.41 279.36 8 Frills Corner Clarion PA PBZ EF1

741697 1930 41.43 279.34 11 Gultonville Clarion PA PBZ EF1

683366 2008 41.6 278.72 21 Dohoga Elk PA CTP EF1

683281 2244 40.94 277.49 0 Rebersburg Centre PA CTP EF1

C-20170502 —

D-20170504 701358 2012 33.65 284.41 0 Atlanta (KATL) Fulton GA FFC EF0

701370 0142 33.79 284.24 2 Avondale Estates De Kalb GA FFC EF0
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and hence potentially tornadogenesis. We also perform the

above process for identifying and verifying thunderstorms in

composite reflectivity with a focus on detection of pertinent

storm characteristics.

2. Methodology of signal detection

Circulations*15 km in diameter can be resolved to a degree by

Dx 5 3 km (Potvin and Flora 2015): i.e., not tornadoes. As such,

we employ proxies in observational and NWP data for capturing

the typical tornadogenetic atmospheric process by identifying its

necessary precursor: mesocyclogenesis (e.g., Markowski and

Richardson 2010). For forecasts, we compute updraft helicity

(UH; derivation and discussion in Kain et al. 2008) as a proxy for

azimuthal wind shear. Trapp et al. (2005) found azimuthal shear in

the 0–2-km layer could serve as a proxy formesocyclone detection

and potentially tornadogenesis. The connection between torna-

dogenesis and mesocyclone detection is weaker at 2–5 km, but

farther from the ground, this layer is less noisy (Sobash et al. 2019).

Herein, we correspondingly present UH in the 0–2-km (UH02)

and 2–5-km (UH25) layers.

a. Ensemble design

We used the Weather Research and Forecasting system

(WRF; Powers et al. 2017), version 3.9.1, for all numerical

simulations. Each simulation’s Dx 5 3-km parent domain is

geographically identical to the Warn-on-Forecast System

(WoFS; formerly NEWSe; Wheatley et al. 2015), relocated

once per universal day between cases. Unavoidably, this do-

main’s latitude–longitude dimensions also changed between

cases (see Table 1). Within the parent domain, we embedded a

1-km 322 3 322 nest with one-way feedback, inheriting the

interpolated initial conditions (ICs) from the parent domain.

The grid locations were prescribed manually to balance factors

of 1) distance of convective initiation from the lateral bound-

ary, 2) the ability to capture themajority of moist convection in

the parent-domain area, and 3) avoidance of steep terrain.

Lateral boundary conditions (LBCs) for both domains were

introduced hourly, taken from the original WoFS member’s

dataset. We use 36 ensemble members, each initialized and

forced by the analogous WoFS ICs and LBCs, respectively.

These WoFS members are described by Table 2. For all runs,

51 vertical levels were used and stacked more tightly closer to

the ground to improve the resolution of the planetary bound-

ary layer. Model top was specified as 20 hPa.

The mixed-parameterization configuration for both ensembles

was chosen tomimic the quasi-operationalWoFS (Wheatley et al.

2015). This diversity increases the ensemble spread to address

some model-based uncertainty. The drawback of ensemble di-

versity of parameterizations is the uniquemodel climates for each

member, which reduces the likelihood of capturing the (notional)

true probability distribution. However, it is often a straightfor-

ward and pragmatic way to improve the reliability and/or dis-

crimination of EPSs (Berner et al. 2015, 2017; Clark et al. 2018).

The WoFS is quasi-operational during the Spring Forecast

Experiment in Norman, Oklahoma; more information can

TABLE 5. Cases in the present study. Columns describe the nominal date (the universal day of first initialization), initialization times,

U.S. states in the domain, the case label, and a brief description of the primary convective modes (cf. Fig. 2).

Case Date Initialization times (UTC) States in 1-km domain Primary modes

A-20160331 31 Mar 2016 1900, 2000, 2100, 2200, 2300 Arkansas, Louisiana, Mississippi, Alabama Complex

B-20170501 1 May 2017 1900, 2000, 2100, 2200, 2300 West Virginia, Pennsylvania, Maryland Linear

C-20170502 2 May 2017 2300, 0000, 0100, 0200, 0300 Oklahoma, Texas, Kansas (Weak) cellular

D-20170504 4 May 2017 2200, 2300, 0000, 0100, 0200 Alabama, Georgia, South Carolina Linear and cellular

FIG. 1. The forecast domains for 3- (blue) and 1-km (red) EPSs. Each case is labeled as

discussed in text. Some states are labeled for context.
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be found at https://hwt.nssl.noaa.gov/spring_experiment (ac-

cessed 1 July 2019). For each day, initial (1800 UTC) analyses

are generated with ICs and LBCs from the ensemble HRRR

(HRRRe; Dowell et al. 2016). The geographical location of the

WoFS domain was chosen by consensus of experiment partici-

pants to maximize the likelihood of capturing that day’s most

severe (convective) weather. Further information on the ad-

vanced assimilation scheme can be found inWheatley et al. (2015)

FIG. 2. Representative model analyses/forecasts for the first initialization time for each case. The rows indicate each case. (a),(e),(i),(m)

The 1200 UTC NARR (3-km domain in blue shown for reference). (b),(f),(j),(n) The 3-km 10-min forecasts (quasi-analyses) of CAPE

(red contour-fill, denoted by scale at bottom), 0–1-km shear (black barbs), and 0–6-km shear (blue barbs), taken from the member closest

to the mean. Gray lines mark 3-km 0–3-km storm-relative helicity, contoured every 100 m2 s22 and labeled every 200 m2 s22. Also shown

are (c),(g),(k),(o) 3- and (d),(h),(l),(p) 1-km composite reflectivity, respectively, valid at representative times from the samemember as in

(b), (f), (j), and (n). This is plotted as pixels colored continuously (i.e., not contour-filled with a 5-dBZ granularity, as is typical) to

appropriately assess differences. The black boxes indicate regions of observed tornadic activity 630 min of the valid time.
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and Wang et al. (2019), while WoFS’s application and perfor-

mance is assessed in, e.g., Skinner et al. (2018), Lawson et al.

(2018), Jones et al. (2018), Flora et al. (2019), and Potvin et al.

(2020). Datasets were interpolated as in Table 3.

b. Observational datasets

Throughout, we assume observational error is unbiased,

normally distributed, and spatiotemporally uncorrelated [as in

Snyder and Zhang (2003)]. This is necessitated by the lack of

suitable uncertainty estimates.

We verify rotation with the Multi-Radar Multi-Sensor

(MRMS) development system at CIMMS/NSSL. MRMS

blends radars across the CONUS into a seamless gridded

dataset (Smith et al. 2016). This verification dataset was pro-

cessed to match the (original WoFS) 3-km domain using only

the assimilated radars. The azimuthal wind shear (AzShear)

FIG. 3. Breakdown of morphology discrimination for the 3-km domain, as an example. (a) An explanation of

variance, after principal component analysis of all objects, by the leading three principal components (of which the

first is MDI), and (b) the distribution of MDI values, for all objects identified in the same domain.

FIG. 4. An illustrationof theobject-identificationandMDImethodologies.Taken fromthefirstmemberof the1-kmEPS.Validat 1930UTC31Mar

2016 (a30-min forecast). (a)The simulated composite reflectivity at this time, (b) all objects (black contours)with criteria-meeting identifiedobjects filled

with simulated dBZ, while (c) each object after MDI computation, where the morphology group for each object is denoted by the legend below.
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product uses a linear least squares derivative approach that

calculates the maximum range-corrected cyclonic azimuthal

component of the horizontal shear: a proxy of rotation in

Doppler radars (Smith and Elmore 2004; Miller et al. 2013;

Mahalik et al. 2019). AzShear is produced in two layers (0–2

and 2–5 kmAGL; AzShear02 and AzShear25, respectively) and

output every 5min on aWoFS-matched 0.018 (2016;;1 km) and

0.0058 (2017; ;0.5 km) domain. No further postprocessing to

AzShear was performed: the verification methodologies were

chosen to filter noise, as discussed in forthcoming sections.

To verify forecasts of composite reflectivity, we use NEXRAD

Level III archives stored at Iowa State University (ISU; https://

mesonet.agron.iastate.edu/docs/nexrad_composites/, accessed

1 January 2019). For creation of the dataset, base reflectivity

data are composited before suspected false echoes are re-

moved through comparison with the Net Echo Top product.

We gathered filtered (i.e., quality-controlled) reports of

tornado and.2.54-cm (.1-in.) hail observations from archives

at https://verification.nws.noaa.gov/services/public/index.aspx

(accessed 1 January 2019). This dataset is generated by re-

moving potential duplicates or erroneous reports. Reports for

each case are detailed in Table 4.

c. Analyses and reanalyses

For each case’s context on the synoptic (CONUS) scale, we

plot North American Regional Reanalysis (NARR) data for

geopotential-height (Z) ‘‘truth.’’ On the meso-g scale, we

employ Dx 5 3 km model output at a forecast time of 10 min

as a quasi-analysis. This is assumed close to the observed state

due to its rapid and advanced ensemble data assimilation

(Wheatley et al. 2015; Jones et al. 2016), while allowing formild

spinup inertia (e.g., some fields are zero at initialization).

d. Cases

Four cases in 2016 and 2017 were chosen for their demon-

stration of supercellular and/or QLCS activity within (gener-

ally) HSLC environments (Table 5; Fig. 1). Three cases include

reported tornadoes, with the fourth acting as a null case. For

each case, five initialization times were chosen during the most

active periods, each an hour apart such that 7 h of the case were

simulated. In general, statistical independence is not assumed

during analysis. The authors will focus on a relatively small

case sample size due to 1) the wish to compare subjective in-

terpretations with various traditional and recent verification

techniques, 2) the relatively small number of suitable cases in

the WoFS archive, and 3) the computational expense of object

identification and associated verification. A rigorous and

comprehensive climatological study is outside the scope of the

present manuscript, requiring a larger dataset (e.g., Schwartz

et al. 2019; Schwartz and Sobash 2019; Sobash et al. 2019).

The four cases are abbreviated with a letter mnemonic

(YYYYMMDD) and briefly described in the following sub-

sections. Figure 2 presents diagnostic and forecast variable

fields for each case. CAPE is computed with the lowest-100-hPa

method (Blumberg et al. 2017). Storm-relative helicity [SRH;

Kerr andDarkow1996;Markowski et al. 1998] is shown between

ground and 3 km. Shear and helicity in the 0–1-km layer may be

critical for tornadogenesis (e.g., Rasmussen 2003; Aran et al.

2009; Geerts et al. 2009), hence we plot the bulk shear between

0–1 and 0–6 km alike. Further information on each tornado re-

port is found in Table 4.

1) 31 MARCH 2016 (A-20160331)

At 1200 UTC, a strong Z trough was analyzed throughout

the troposphere over the Great Plains (Fig. 2a), while a surface

cold front is evident in the 925-hPa Z minimum running from

northern Wisconsin toward Texas (frontal analysis by the

Weather Prediction Center; https://www.wpc.ncep.noaa.gov/

archives/web_pages/sfc/sfc_archive.php; not shown). Convection

originates from a point within locally high CAPE values in

southern Arkansas and northern Louisiana, around 1900 UTC

(1400 CDT; Fig. 2b). (Simulations for this case begin at this time.)

As the complex strengthens, tornado watches were issued by the

SPC in advance of the eastward-movingQLCS in bothMississippi

TABLE 6. Percentile–magnitude lookup table for the analysis herein. Values of UH02 andUH25 are in m2 s22; AzShear02 andAzShear25
are in s21; and composite reflectivity (simulated and observed) is in dBZ. Small differences between observation magnitudes, at different

Dx, are artifacts of the interpolation scheme.

Percentile Variable 3-km EPS 1-km EPS Variable Obs (3 km) Obs (1 km)

99 UH02 5.67 15.33 AzShear02 3.6 3 1023 3.7 3 1023

99.5 9.52 24.01 4.4 3 1023 4.5 3 1023

99.9 25.97 48.65 6.7 3 1023 6.9 3 1023

99.95 35.63 57.05 8.2 3 1023 8.3 3 1023

99 UH25 9.6 26.8 AzShear25 4.2 3 1023 4.2 3 1023

99.5 17.2 50.4 5.1 3 1023 5.2 3 1023

99.9 52.4 153.2 7.6 3 1023 7.8 3 1023

99.95 75.2 212.4 9.0 3 1023 9.2 3 1023

70 Composite reflectivity 15.0 15.8 NEXRAD 14.9 14.5

80 23.5 24.8 23.5 23.4

90 34.7 36.2 32.9 32.8

95 41.9 43.4 38.7 38.6

96 (Object threshold) 44.3 45.7 (Object threshold) 40.5 40.5

99 52.0 53.7 49.0 49.1

99.9 63.5 65.7 57.3 57.5
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and Alabama. By 0200 UTC (2100 CDT), tornado watches were

in effect from Mississippi east to Georgia as the complex exited

the area of interest. Tornadoes were reported in Mississippi and

Alabama, primarily after 2300 UTC (1800 CDT), within a thun-

derstorm complex (EPS output near this time is shown in Figs. 2c

and 2d). Tornadic supercells were observed and detected by radar

near the Mississippi–Alabama border, marked by a black box in

Figs. 2c and 2d.

2) 1 MAY 2017 (B-20170501)

Sixhoursbefore thefirst tornado reports inwesternPennsylvania,

the area of interest lay east of a cutoffZminimum over Iowa at

500 hPa; there is little directional shear due to vertical stacking

of Z minima (Fig. 2e). While tornadoes were observed

(;1830 UTC onward; Fig. 2f), an eastward-moving QLCS

marks a tight gradient in SRH. The SRH values maximize

along the QLCS in the northwestern domain quadrant (Fig. 2f)

concurrent with 15 m s21 0–1-km shear and 30 m s21 0–6-km

shear. This region is associated with weaker (EF0, EF1) tor-

nadoes near the black box in Figs. 2g and 2h. All observed

reports in the state occurred under a SPC tornadowatch. Later,

another tornado was observed farther east in Rebersburg (near

State College) with the same eastward-moving QLCS.

3) 2 MAY 2017 (C-20170502)

This case occurred ahead of a weak 500-hPa Z trough

(Fig. 2i), while 925-hPa Z gradients were slack. No tornadoes

were observed this day, butmultiple hail and wind reports were

reported throughout a swath of the Texas and Oklahoma

Panhandles associated with supercells (not shown). This case

is included as a null case to provide a balanced sampling of

convective episodes.

4) 4 MAY 2017 (D-20170504)

At 1200 UTC, a negatively tilted Z trough is evident at low-

and midlevels (Fig. 2m). There are two tornadoes reported

within our domain of interest at 2012 and 0142 UTC (both EF0

with ,3-min warning time). Between these reports, we esti-

mate 10–20 m s21 0–1-km shear and 20–25 m s21 0–6-km shear

(Fig. 2n). The second tornado was reported within a QLCS

in central Georgia (Figs. 2o,p).

3. Method: Gridpointwise verification

We can form a 2 3 2 contingency table (Green and Swets

1966; Jolliffe and Stephenson 2003) as follows for verifying

forecasts of composite reflectivity: 1) For each grid point in

each field of simulated composite reflectivity, check the fore-

cast value exceeds a given magnitude; 2) repeat for observa-

tions (on their corresponding grids); 3) forDx5 3 km andDx5
1 km we then represent verified event forecasts A as hits, un-

verified forecasts B as false alarms, and not-forecast observed

events C as misses. We leave the final box (D) undefined

herein, deferring the issue of defining not-observed, not-fore-

cast frequencies.

These contingency tables are created from grids, not events,

in contrast to scores presented in section 5. Regardless of how

the contingency table is created, however, we can compute

traditional metrics (e.g., Jolliffe and Stephenson 2003):

POD5
A

A1C
, (1)

FAR5
B

A1B
, (2)

bias5
A1B

A1C
, (3)

CSI5
A

A1B1C
, (4)

SR5 12FAR: (5)

These metrics are probability of detection (POD), false-

alarm ratio (FAR), frequency bias (hereafter bias), critical

success index (CSI), and success ratio (SR). These traditional

gridpoint-comparison metrics are only valid at the truncated

(Dx) scale; hence, these scores provide a lower bound on the

potential benefit of decreasing Dx in EPSs. It is inappropriate

to rely exclusively on a pointwise comparison when there is

operational tolerance to temporal and spatial error. This is

evident to the human forecaster using EPS output running at

O(1) km: Lorenzian saturation has been reached at time and

length scales close to those of interest but there is still useful

information present regarding convective mode, storm char-

acteristics, etc. This discrepancy between practical predict-

ability and skill at the truncated scale—versus that of the object

itself—is discussed in Potvin et al. (2017), Flora et al. (2018),

and Lawson (2019), among others.

FIG. 5. Gridpointwise performance diagram of forecasted com-

posite reflectivity, for each case (labeled) at 60-min lead time, aggre-

gated over allmembers and initialization times. The diagram is formed

from a contingency table detecting exceedance of 40-dBZ reflectivity.

Points from the 3- and 1-km EPSs are colored blue and red, respec-

tively. The black squares in Fig. 6 correspond to the four pairs of

scatter points, for reference. Red dashed lines represent lines of con-

stant bias; blue lines represent lines of constant critical success index.
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4. Method: Scale-aware verification

To avoid double penalties in time and space, and reduce

Dx-scale noise, we employ the extended fractions skill score

(Roberts and Lean 2008; Schwartz et al. 2010; Duc et al. 2013;

Schwartz and Sobash 2017):

eFSS5 12
FBS

FBS
ref

, (6)

where FBS is the fractions Brier score, and FBSref is its refer-

ence forecast:

FBS5
1

N
x
N

y
N

t

�
Nx

�
Ny

�
Nt

(M2O)
2
, (7)

FBS
ref

5
1

N
x
N

y
N

t

�
Nx

�
Ny

�
Nt

(M2 1O2) . (8)

Above,M andO represent the four-dimensional (time, ensemble

member, latitude, longitude) windows that specify the fraction of

grid points within the window that exceed a given threshold (e.g.,

if composite reflectivity is being evaluated, the threshold is set in

dBZ). The symbolsNx,Ny, andNt are the lengths (in voxels) of the

windows in the longitudinal, latitudinal, and temporal dimensions,

respectively. The ensemble dimension is implicit in the above

definitions; further derivations can be found in Duc et al. (2013).

Herein, we compute eFSS with a fast Fourier Transform (FFT)

methodderived fromFaggian et al. (2015), using a square kernel to

reduce computational expenses [as in Roberts and Lean (2008)].

Themodel climatologies of both EPSs are so different that the

use ofmagnitude thresholdingwould yield biased results; further,

comparison of UH and AzShear is one of nonequivalent quan-

tities. Therefore, for scale-aware and object-based results in the

present paper, we show only scores related to exceeding per-

centiles of a given variable’s distribution. Here, we are most in-

terested in detection of rotation near the top decile of occurrence.

5. Method: Object identification and classification

As the focus of the present study is on thunderstorms—discrete

phenomena in fields such as composite reflectivity—wedeploy the

following algorithms to reveal and categorize storm objects in

forecast and observational data. The identification and matching

methodologies were formed to meet the requirements of the

present study, but inspired by similar object-based methods

such as the use of object-event contingency tables (Skinner

et al. 2018), the Structure–Amplitude–Location method (SAL;

Wernli et al. 2008) and its probabilistic extension (eSAL;

FIG. 6. EPS differences in gridpointwise composite-reflectivity verification, calculated as the vector in POD–

FAR space. Color represents themodel with a performance closer to optimal (i.e., the top-right corner of Fig. 5) for

that threshold and forecast time, with blue indicating a better performance for the 1-km EPS, and red vice versa.

The black squares denote the four scatter-point pairs shown in Fig. 5.
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Radanovics et al. 2018), and Method for Object-Based

Diagnostic Evaluation (MODE; Davis et al. 2006).

a. Object identification

First, we use the Python library scikit-image (van der Walt

et al. 2014) to identify features in the composite reflectivity

field. Identified objects are dropped from the catalog if they

comprise fewer than 144 (Dx5 1 km) or 48 (Dx5 3 km) pixels

exceeding the 96th percentile of reflectivity for that dataset

(this percentile minimizes the difference between the percentile–

dBZ trends for each domain near 45 dBZ), or if the object touches

the domain edge. The removal of at-edge objects is crude, but we

find that most storms move through the domain during the 7 h of

simulation and are identified at some point. Ramifications of at-

edge object removal include risk that largest (and likely most-

predictable) objects are more likely to be ignored, given their

increased likelihood of touching the domain edge. Further, this is

more likely to occur in the finer 1-kmEPS. The area-footprint and

thresholds were chosen after extensive trial-and-error, based on

subjectively capturing most objects pertinent to a forecaster.

After object identification, further characteristics were

computed for each object. Most of these characteristics were

object properties taken directly from scikit-image output;

others were computed manually. Some storm characteristics

were computed in conjunction with other forecast fields (e.g.,

vertical motion W; discussed in section 9). This process was

repeated over all times and all runs, with the 36 forecast

members yielding ;208 000 objects, while ;2600 observed

objects were identified (a number of forecast objects feature

in overlapping forecast times).

b. Object classification and principal component analysis

After an object database was created, preliminary work

revealed that most objects lay on a spectrum from cellular to

FIG. 7. An example of stronger, spurious convection seen in the 1-km domain at early lead times: (a) observed

data (interpolated to the 3-km grid) and (b),(c) the 30-min 3- and 1-km forecasts, respectively, from the m01

members of the 1900 UTC runs for A-20160331.
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linear morphologies. To reveal this main axis of variation, we

performed a principal component analysis (PCA) for each data-

set. The PCA did not vary substantially between grid products

(i.e., the leading principal component PC1 was a similar linear

combination of factors in all four grids), suggesting the spectrum

of morphologies was consistent across the four domains.

To begin the PCA, we subjectively chose seven character-

istics that visually discriminated between cellular and linear

convective modes. These were area, eccentricity, extent,

maximum and mean composite reflectivity, perimeter, and

major-axis length. While PC1 was not guaranteed to reveal

an optimal discriminator between classes, in this case it

represented variation in convective mode. Figure 3a shows

the projection of the three leading PCs onto feature space.

The interpretation of PC1 as the measure of an object’s

‘‘QLCS-ness’’ fits with the strong positive correlation between

object area, eccentricity, long-axis length, and perimeter

length. Hence, we use this PCAmodel to fit and transform each

object’s characteristics into the leading principal component

value, hereby termed Morphology Discrimination Index

(MDI). Figure 3b shows the distribution of MDI values in

the climatology. Given the success of PC1 in discriminating

classes, we discard other PCs in further analysis.

Each identified storm was classified by its MDI value. Using

trial-and-error during preliminary testing, we found that three

categories were reasonably discriminated using two division

thresholds. Objects with MDI values , 20.5 were typically

discrete with a low (i.e., circle-like) eccentricity and were

placed into a Cellular group. At .0.5, objects were often as-

sociated with a QLCS, and more occasionally, part of a thun-

derstorm complex. Objects in this range of MDI values were

therefore denoted Linear/Complex. Finally, objects in the

range [20.5, 0.5] were difficult to categorize, and as such we

use a third remainder category (Ambiguous) to improve the

FIG. 8. EPS differences in forecast skill of composite reflectivity, as measured with eFSS, for (left to right) all four cases and (top

to bottom) three representative forecast lead times. Cases are aggregated over initialization times. All eFSS computations are done with

a610-min temporal tolerance; spatial tolerance is indicated on the x axes of each panel. Threshold, in terms of percentiles, is shown on the

y axes. Not-a-number (nan) shown for partitions of insufficient sample size.
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signal-to-noise ratio of our discrimination. An example of this

process is shown in Fig. 4, where the overforecasting of cells is

pronounced. Overforecasting dBZ in WoFS from Thompson

microphysics (used in 2016WoFS), particular in the first hour and

using early HRRRe ICs, is discussed in Skinner et al. (2018). This

overforecasting is reduced for 2017 cases, which used NSSL two-

moment microphysics (Mansell et al. 2010; see also Table 2).

c. Object matching

Objects were matched using the total interest (TI) score

(Davis et al. 2006) as in Skinner et al. (2018). Namely,

TI5
Dt

max
2Dt

2Dt
max

�
Dc

max
2Dc

Dc
max

1
Dm

max
2Dm

Dm
max

�
, (9)

where Dt represents the temporal difference between an object

pair, Dc is the difference between object-pair centroids, and Dm
is the smallest distance between any pixel in each of the pair’s

objects. The subscript max indicates a maximum threshold for

matching two objects: we specify Dtmax (maximum permissible

Dt) equal to 20min (i.e., a 40-min window), whileDm and Dc are
both set to 40 km. In the event of multiple matches between

forecasted and observed objects, the maximum TI score over all

relevant matched pairs dictates the chosen pair.

6. Object verification

Object-based verification methodologies have become more

common (e.g., Ebert 2008; Gilleland et al. 2010) for appropriately

verifying at the meso-g scale. The conversion of gridded data to a

set of objects better fits human intuition in terms of forecast ver-

ification. The caveats to object-based methodologies include an

undefined score in the absence of objects and subjectivity of pa-

rameter prescription.

As an analog to the traditional performance diagrams in

section 3, we form contingency tables of object occurrence

rather than exceedance of a threshold. The resulting object-

based performance diagrams (shown later) are a useful ex-

tension to traditional, gridpointwise performance diagrams.

However, to preserve more information about the ensemble

distribution, we evaluated the probabilistic forecast of rotation

as follows: 1) forecast probabilities for a given observed object

were generated by matching the given object to one in each

forecast member, where feasible; 2) a lack of match indicated a

miss for the (unidentified) object’s event in question (e.g., its

existence); 3) this yields the probability of exceeding a given

rotation threshold or the probability of an object (meeting

given criteria) occurring within tolerances. For rotation veri-

fication, we identified the maximum UH or AzShear value

within each object’s bounds, then assessed whether the forecast

object exceeded four observed rotation thresholds (Table 6).

Object-specific information gain

We now use the concept of NWP models removing prior

uncertainty of a situation (Roulston and Smith 2002), or

conversely, a way of gaining information (Peirolo 2011)

over a prior baseline. As the rarity and extremity of weather

FIG. 9. As in Fig. 8, but for low-level rotation UH02.
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phenomena are often correlated (Sterk et al. 2016), we

employ a more appropriate way of rewarding the ensemble

forecasts herein, using information theory (summarized in

Pierce 1980; Cover and Thomas 2012).

In abstract terms, information theory can be interpreted as

the discretization of a probabilistic system to a collection of

binary choices (Shannon 1948; Gleick 2012). In a meteoro-

logical context, we evaluate the ability of both EPSs to transmit

information from model to forecaster via (filtered) model

output. This filtering is often subconsciously performed by the

human forecaster—aware of model biases and typical orders of

location and timing error—but this filtering is (forgivably) not

always optimal (Wilson et al. 2019).1 Herein, we mimic such

filtering by identifying objects, matching them within toler-

ances, and evaluating the information gain for each ensemble

over a naive measure of prior uncertainty.

Consider a forecaster receiving the output from a NWP

model, prior to issuing a forecast for thunderstorm occurrence

in the next hour. Shannon (1948) implies the forecaster’s in-

formation deficit Ho of a thunderstorm object, in bits, is

purely a function of a storm’s rarity (representing the surprise

of observing the event):

H
o
52log

2
E(o) , (10)

where expectation probability E(o) of the observed object is

in the range [0, 1]. (This is distinct from the mathematical

expectation function.) From this definition of self-information,

many similar scores have been used in meteorology as the

logarithm score (Good 1952), ignorance (IGN; Roulston

and Smith 2002), and the Kullback–Leibler Divergence

Score (Weijs et al. 2010; Ding et al. 2019). We then express

the IGN of an event (i.e., object occurrence) as a function of

the forecast probability P(o) of the observed object, as an

analogy of Eq. (10):

IGN
o
52log

2
P(o) . (11)

This is a fundamental measurement of information content or

deficit, assuming optimal data compression, as discussed in

Shannon (1948, p. 396). For context, an expectation of 1%

yields an IGNo of 6.64 bits (for comparison, before flipping a

coin, IGN 5 1 bit). The advantages of the information-theory

framework include a unitless measure (as opposed to Brier-

type scores) that, through its logarithm, encodes increased

rewards for correct forecast of extreme and/or rare events.

Indeed, when using IGN, the evaluator must bound forecast

probabilities to avoid values diverging to infinity. At first

glance to the meteorologist, this may appear undesirable;

however, an infinite punishment matches the potentially dire

consequences of decision-making predicated on absolute zero

or unity certainty. Such binary (deterministic) forecasts are

FIG. 10. As in Fig. 8, but for midlevel rotation UH25.

1 This suboptimality is analogous to an inefficient data compres-

sion algorithm (Shannon 1948), hence further motivating specific

training as addressed in Wilson et al. (2019).
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especially egregious when ensemble undersampling is un-

avoidable. We finally note that the missing information rep-

resented byH and related quantities (e.g., IGN) was termed by

Shannon as information entropy; we prefer to use the more

intuitive uncertainty herein as argued by Ben-Naim (2008).

Because we are comparing uncertainty removal of two in-

dependent systems, and if we only consider objects that were

observed (i.e., D is undefined), we can recast IGNo as infor-

mation gain (IG; e.g., Peirolo 2011) via identities as the

logarithm of the ratio of forecast probability to the expectation

of an object occurring:

IG
o
5 log

2

�
P(o)

E(o)

�
. (12)

If we assume a blanket E(o) to represent the average expec-

tation of a cellular object occurring at a random point in the

domain within the next three hours, we find an object-specific

FIG. 11. Distribution of (a)–(h) EPS differences between domain-matched cellular objects (1-km minus 3-km), where the black line

indicates the x-axis zero line, with themedianmarkedwith amagenta dashed line, and the interquartile range delineated by orange dashed

lines. Hence, a positive median value may be interpreted as a typical 1-km object having a higher value of the given diagnostic. (i) The

distribution of EPS object-centroid Euclidian differences (in km). The x axes denote magnitudes of each diagnostic, while y axes indicate

the number of objects in a given bin.
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information gain IGo. A positive value represents information

gained by the forecaster with a forecast in hand; negative

values indicate information lost. If the distribution median

of IGo approaches zero, this represents a filtered form of

Lorenzian saturation; i.e., we are evaluating the predictability

of events rather than that at the truncated (Dx) scale (Flora

et al. 2019). AsE(o) is decreased from unity to zero, there is an

exponentially increasing reward of a ‘‘good’’ forecast (i.e.,P(o)

is maximized). Changes to E(o) do not change the overall IGo

distribution shape: only the sign and magnitude of information

gained or lost. Considering the above, we set E(o) as 0.1 for all

cases, and bound all forecast probabilities within the range

[0.01, 0.99] to avoid divergence to infinity. This caps maximum

information gained or lost at 2.3 bits and 24.32 bits, respec-

tively. This asymmetry is intuitive: themore expected an event,

the less usefully surprising information a forecaster receives

from the NWP output, and the more damaging (i.e., increasing

negative IGo) a randomly chosen object would be, on average.

A preferred characteristic of IG is its propriety, and therefore it

cannot be hedged: IGo is maximized when observed and

forecast distributions align (Peirolo 2011).

7. Results: Gridded data evaluation

In Fig. 5, we present a performance diagram (Roebber 2009)

showing the SR, POD, bias, and CSI. The scatter points indi-

cate results of exceeding 40 dBZ, at 60 min lead time for each

case (this represents a potential use case for WoFS when as-

sisting nowcasts of severe weather). A perfect forecast would

be marked at (1, 1). The results are mixed and little can be said

in terms of systematic advantage at each native Dx. We also

show differences between the EPSs as POD–FAR vectors

(Fig. 6), oriented such that red pixels represent thresholds, lead

times, and cases where Dx 5 1 km performance was closer to

optimal. For context, each scatter pair in Fig. 5 is marked with a

black box in Fig. 6. The case-to-case variability suggests im-

provements for Dx 5 1 km may be associated with more fre-

quent or stronger rotation, or a function of atmospheric

regime, but there is an overforecasting bias of reflectivity

(Fig. 7). Rather than test the previous for statistical significance

at a noisy Dx scale, we defer further evaluation to the following

sections that use tools more appropriate to the scales of in-

terest. Analogous scores in the object-based framework will

be shown in section 9.

8. Results: Scale-aware evaluation

The following results compare percentiles between experi-

mental domains, rather than magnitude values, and the con-

version can be found in Table 6. During preliminary testing, we

tested eFSS with temporal window sizes of 1, 3, and 5 steps (i.e.,

60,65, and610min, respectively). The addition of a temporal

window did not greatly change the relative performance of the

EPSs, but magnitudes of difference were reduced, and the

larger sample of points for the610-minwindow allowed higher

percentiles to be evaluated. The temporal window also math-

ematically excuses small errors in timing of storm location (in

composite-reflectivity data) and mesocyclone location (in

UH/AzShear data): a fair yardstick with which to measure

operational or development EPSs. In the following, we present

eFSS with a 610-min (five forecast times) temporal window.

We also introduce progressively larger tolerances in latitude–

longitude space to avoid double-penalizing small phase errors

in thunderstorm location. The eFSS scores calculated here (see

section 4) are computed on spatial neighborhoods from native

Dx to 27 km in diameter. This allows direct comparison at

neighborhoods of 3 km and larger, measuring whether the

change in Dx has affected skill at a given scale.

First, we combine all five initializations times for each case

and compute eFSS for reflectivity forecasts (Fig. 8). We find 1)

the Dx5 1-km EPS outperforms Dx5 3 km in the highest 1%–

5% of reflectivity values (*40 dBZ), consistent with the weak

signal in Fig. 6; 2) the 1-km EPS progressively outperforms the

3-km EPS at larger Dx (scales of 5 km); and 3) conversely,

overforecasting at Dx 5 1 km (i.e., spurious convection) is

evident as worse eFSS scores earlier in the forecasts. In gen-

eral, results are mixed across all variables: case, length scale,

lead time, and threshold. At this point, it is difficult to reject a

null hypothesis that added value at Dx 5 1 km cannot justify

the additional computational expense.

In eFSS differences of UH02 forecasts (verified with their

observational-proxy counterpart AzShear02), there is a general

trend for Dx 5 1 km to perform better than Dx 5 3 km at de-

tecting low-level rotation (Fig. 9), particularly for the QLCS in

B-20170501, but the gains are otherwise weak or inconsistent.

ForUH25, presented in Fig. 10, we find eFSS gains atDx5 1 km

are larger inmany pixels, but otherwise results are againmixed.

In summary, a scale-aware evaluation suggests Dx 5 3 km is

superior at detecting weak-to-moderate reflectivity magni-

tudes, but Dx5 1 km is better at detecting high reflectivity and

low- to midlevel rotation—with the caveat that results are in-

consistent across cases.

9. Results: Storm-object attributes

Objects were first identified in composite-reflectivity fields

using the methodology described in section 5. In this section,

we consider either/both linear and cellular reflectivity objects.

a. Deterministic (member-to-member) framework

We compare attributes for EPS cellular objects only, due to

their increased likelihood of producing tornadoes. The nine

panels in Fig. 11 represent differences between EPS-matched

objects for the following quantities: area, computed by count-

ing each pixel that is part of the object; extent, which is the

fraction of points in the bounding box that are part of the object

(an object that resembles a Swiss cheese will have a low ex-

tent); longest axis length of the object; eccentricity, where unity

indicates a circle; maximum composite reflectivity within the

object; maximum updraft speed forecasted within the object;

maximum UH02 and UH25 in the layer; and distance between

object centroids in the horizontal plane.

On average, Fig. 11 suggests Dx 5 1-km objects are smaller

in area but longer in their major axis (Figs. 11c,d), and;5 dBZ

more intense (Fig. 11e), than their Dx 5 3-km counterparts.

Storm updrafts are typically stronger at Dx 5 1 km; 25% of
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FIG. 12. Cellular-object performance diagrams of each EPS in detecting a thunderstorm, showing each ensemble member (squares;

color denotes the EPS Dx) and the mean skill of the EPS (marked with a cross; color as above), for the (a),(d),(g),(j) first; (b),(e),(h),(k)

third; and (c),(f),(i),(l) fifth initialization times, and for the (a)–(c) A-20160331, (d)–(f) B-20170501, (g)–(i) C-20170502, and (j)–(l)

D-20170504 cases. Blue and red colors mark 3- and 1-km EPS results, respectively.
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Dx 5 1-km objects possess an updraft .10 m s21 stronger.

Rotation at Dx 5 1 km was also stronger at low and midlevels

(Figs. 11g,h). The typical location difference between matched

objects was ,20 km.

We show performance diagrams for the first, third, and fifth

initialization times of all four cases in Fig. 12 for cellular-

object-based contingency scores averaged over all forecast

times. For brevity, we drop the second and fourth runs from

discussion. When compared to gridpointwise performance di-

agrams (Fig. 5), we find more scatter points are closer to top

right, despite including objects late in the forecast (i.e., low

predictability), than in the traditional equivalents (not shown).

This higher estimate of practical predictability stems from the

filtering process of object identification, and the larger scale of

interest associated with thunderstorm properties (rather than

assessment of Lorenzian predictability at the Dx scale). Before
proceeding, we remind the reader that object-based perfor-

mance diagrams are a deterministic treatment of EPS output;

object-based probabilistic skill gain is measured later in the

section.

For the first initialization run (1900 UTC) for A-20160331

(Fig. 12a), we again see evidence of overforecasting of strong

storms (cf. Fig. 7) as bias values .1 (i.e., left of the x 5 y di-

agonal). The overforecasting bias is worse in Dx 5 1 km. On

average, members from either EPS perform approximately as

well as each other; however, the POD ranges from 0.25 to 0.55

FIG. 13. Distribution of cellular-object information that is gained

over a naive 10% expectation of object occurrence, in bits, for the

(a) 0–1-, (b) 1–2-, and (c) 2–3-h lead-time windows of forecast-

object occurrence. The x-axis zero-line (black line) also marks the

boundary between a transfer of information that is useful vs det-

rimental to the end-user (assuming optimal posterior decision-

making). Fill indicates the EPS Dx; dashed lines indicate median

information gain/loss, colored likewise for each EPS. The red and

green solid lines indicate maximum information loss and gain, re-

spectively, which is solely a function of the choice of EPS-probability

bounding (see text); the distribution extends past these limits due to

the smoothing used. The y axis is normalized for each time.

FIG. 14. As in Fig. 13, but for linear objects.
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for Dx 5 3 km, and 0.25 to (a slightly higher) 0.65 for Dx 5
1 km. Intermember differences span these ranges: there is

often little correspondence between performance and

member (not shown). On average, the 2100 UTC initiali-

zation performs better (Fig. 12b) than at 1900 UTC. The

1-km members still produce more objects than those at

3 km. There is also ;0.1 improvement in mean POD and

CSI at Dx 5 1 km, albeit at a slightly lower SR. For the run

2 h later (2300 UTC; Fig. 12c), the performance is even

better than the 2100 UTC initialization. There is a tight

cluster of points, suggesting relatively high predictability

for this run. The 1-km EPS maintains a slight advantage for

this time in all four variables.

In contrast, B-20170501 performs more poorly. The first

initialization (1900 UTC; Fig. 12d) shows the finer grid sub-

stantially overforecasts storms; this bias eases for later cases

(Figs. 12e,f), but is consistently larger than the coarser grid. In

contrast to the later initializations of A-20160331 (above), we

find a larger spread for all initializations of B-20170501: this

indicates a relatively low casewide predictability.

As expected from the case with fewest storm objects,

C-20170502 has mostly undefined performance scores for

members in the first initialization (2300 UTC; Fig. 12g).

Later, for the 0100 UTC run (Fig. 12h), the members that do

contain sufficient objects for contigency-table calculation

show slight improvement for Dx5 1 km, mainly in better SR,

and there is an underforecasting bias for this case in both

EPSs. The final 0300 UTC run (Fig. 12i) shows a slight im-

provement in mean 1-km performance, with a few finer-grid

members demonstrating .0.7 POD.

Finally, D-20170504 is dominated by QLCS activity, and all

three initializations time show a substantial improvement in

FIG. 15. Distribution of remaining uncertainty of low-level rotation UH02 per cellular object, in bits, for the

(a),(b) 0–1-, (c),(d) 1–2-, and (e),(f) 2–3-h lead-timewindows, exceeding the (a),(c),(e) 99.5th and (b),(d),(f) 99.95th

percentiles. Forecasts lower than 20% were excluded from the figure to remove the excessive signal of correct

negatives. Zero represents a perfect forecast. Median remaining uncertainty is shown by dotted lines; those in

(a) are collocated.
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mean POD, SR, and CSI for the 3-km EPS. In this case, bias is

close to unity (optimal) for both EPSs.

In the cases of high spread in POD–FAR space, an average is

not sufficient to reconstruct the complexity of each forecast’s

probability distribution (i.e., we are losing information during

the evaluation process). As such, we next perform a probabi-

listic evaluation of object forecasts.

b. Probabilistic framework

Before proceeding, we subset the Linear/Complex into a

further subset of linear-only objects. This was done by in-

cluding those Linear/Complex objects that exceeded 0.85 ec-

centricity, based on sensitivity testing.

1) OBJECT OCCURRENCE

To aggregate an estimate of information gained for each

experiment about the objects’ existence (within tolerances)

over a prior expectation of 10%, we present the distributions of

IGo for all objects in the study, grouped by mode and forecast

hour. A smoothing is applied; the sigma and kernel shape were

tested to ensure a fair representation in Fig. 13, with the trade-

off that values extend beyond the mathematical bounds.

We begin with cellular objects. During the first hour

(Fig. 13a), we find a median information gain that is ;0.5 bits

larger in the 1-km EPS versus at 3 km. For later forecast times

(Figs. 13b,c), the medians of both EPSs approach zero as

predictability is lost, and Dx 5 1 km maintains a modest im-

provement in median information gain throughout. For linear

objects, the finer grid consistently provides more value over

Dx 5 3 km for all three time periods (Figs. 14a–c).

2) ROTATION

In the following plots, wemeasure the remaining uncertainty

in rotation for each EPS’s identified storms. Hence, an optimal

forecast would have zero bits of remaining uncertainty. We

separate the following analyses into linear/cellular, low/midlevel

FIG. 16. As in Fig. 15, but for midlevel rotation UH25. The median lines for each domain in (b) and (c) are

collocated.
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rotation, exceedance of 99.5th and 99.95th percentiles of ro-

tation at that level, and forecast hour.

First, cellular-object low-level rotation (Fig. 15) shows

consistently larger uncertainty removal (lower negative

values) in the 1-km EPS for both percentiles of strong low-

level rotation, but substantially more value at the extreme

percentile (99.95th). Remaining uncertainty increases with

lead time due to predictability loss. The added value of Dx5
1 km increases with lead time, likely due to first-hour

overforecasting at 1 km. Moving to midlevel rotation for

cellular objects, benefit of the finer grid is only evident at the

more extreme percentile (Fig. 16). In summary, we may

infer cellular-object rotation is better forecast at Dx5 1 km,

especially at extremely high levels.

For linear objects detecting low-level rotation (Fig. 17), an

advantage of using Dx 5 1 km is seen consistently and con-

clusively across all lead times and both percentiles. The benefit

of Dx 5 1 km is likewise seen in midlevel-rotation detection

(Fig. 18), albeit more modestly. In summary, the 1-km EPS is

superior in gaining information about storm existence over a

prior expectation of 10%, and consistently removes more un-

certainty than Dx5 3 km for rotation at both levels (more so at

lower levels) and at both top-percentile thresholds (more so at

the 99.95th percentile).

10. Conclusions

Herein, we addressed whether benefit arises from ensemble-

forecast resolution increases, particularly for thunderstorms in

low-CAPE, high-shear environments. We evaluated rotation

associated with cellular and linear features in composite

reflectivity (i.e., supercells and quasi-linear convective sys-

tems). The forecast data were generated from two convection-

allowing ensemble prediction systems, differing only in their

domain size and horizontal grid resolution (3 vs 1 km), for five

initialization times over 4 days. Performance of each ensemble

experiment was assessed with three methods: 1) traditional

pointwise metrics that contain no tolerance for spatial and/or

timing error; 2) a scale-aware metric that tolerates space–time

errors; and 3) a sequence of object-identification algorithms

FIG. 17. As in Fig. 15, but for low-level rotation UH02 associated with linear objects.
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that yields an estimate of bulk information gain for each

ensemble.

In conclusion, we find that scale-aware verification results

are sensitive to the case, variable, lead time, and magnitude of

the variable in question. The 1-km forecasts are typically better

for detecting high reflectivity, and low- and midlevel strong

rotation, but to the detriment of weak-to-moderate reflectivity

forecast skill that might degrade the detection of parent

thunderstorms. When viewed in an object-based uncertainty-

removal paradigm, the distribution of object-specific infor-

mation gain reveals that the NWP output of thunderstorm

occurrence—a necessary precursor for tornadoes—is more

valuable to the forecaster when a finer (1-km) grid is used.

More uncertainty is also removed by the 1-km EPS regarding

rotation detection within both linear and cellular objects, at

both low- and midlevels (more so for low levels) and increas-

ingly so at the extreme (99.95th percentile) rotation threshold.

This corroborates the advantage of finer grids in (Potvin and

Flora 2015; Sobash et al. 2019). However, given continuously

increasing computer resources, it begs the question of whether

these results justify decreasing Dx, rather than spending re-

sources on increased ensemble membership, more frequent

initialization times, and so on.

The authors encourage further use of information-theoretical

frameworks to adequately reward ensemble forecasts of rare

weather events, reducing probabilistic evaluation of any variable

or diagnostic to the degree of information gain. Moreover, ad-

ditional insight is gained after transformation of the gridded

fields to thunderstorm objects for storm-characteristic verifica-

tion. Work is ongoing regarding the effect of higher resolution

on various thunderstorm modes within high-shear, high-CAPE

flow; a larger dataset of cases is also required to confirm the

findings herein.
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